A conserved interferon regulation factor 1 (IRF-1) from Pacific oysterCrassostrea gigasfunctioned as an activator of IFN pathway

    loading  Checking for direct PDF access through Ovid

Abstract

Interferon regulatory factors (IRFs), a family of transcription factors with a novel helix-turn-helix DNA-binding motif, play important roles in regulating the expression of interferons (IFNs) and IFN-stimulated genes. In the present study, an interferon regulation factor 1 was identified from oyster Crassostrea gigas (designated CgIRF-1), and its immune function was characterized to understand the regulatory mechanism of interferon system against viral infection in invertebrates. The open reading frame (ORF) of CgIRF-1 was 990 bp, encoding a polypeptide of 329 amino acids with a typical IRF domain (also known as DNA-binding domain). The mRNA transcripts of CgIRF-1 were detected in all the tested tissues with the highest expression level in hemocyte. CgIRF-1 protein was distributed in both nucleus and cytoplasm of the oyster hemocyte. The mRNA expression of CgIRF-1 in hemocytes was significantly up-regulated at 48 h after poly (I:C) stimulation (p < 0.05). The recombinant CgIRF-1 (rCgIRF-1) could interact with classically IFN-stimulated response elements (ISRE) in vitro. The relative luciferase activity of interferon-like protein promotor reporter gene (pGL-CgIFNLP promotor) was significantly (p < 0.05) enhanced in HEK293T cell after transfection of CgIRF-1. These results indicated that CgIRF-1 could bind ISRE and regulate the expression of CgIFNLP as a transcriptional regulatory factor, and participated in the antiviral immune response of oysters.

Related Topics

    loading  Loading Related Articles