Heme Oxygenase-1 inhibits spring viremia of carp virus replication through carbon monoxide mediated cyclic GMP/Protein kinase G signaling pathway

    loading  Checking for direct PDF access through Ovid

Abstract

Spring viremia of carp virus (SVCV) is the etiological agent of spring viremia of carp (SVC) and causes mass mortality in common carp (Cyprinus carpio). Currently, no effective treatments or commercial vaccines against SVCV are available. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the degradation of heme to produce carbon monoxide (CO), biliverdin and ferrous iron (Fe2+), exerts anti-oxidant, antiinflammatory and anti-apoptotic properties. Previous studies demonstrated that nuclear factor-erythroid 2 related factor 2 (Nrf2) functions as an important upstream regulator of HO-1 and exhibits robust activity against SVCV infection. In this study, we further examined the antiviral activity of HO-1 against SVCV infection. The elevated expression of HO-1 was induced upon cobalt protoporphyrin (CoPP) treatment in EPC cells without affecting cell viability and thus inhibited SVCV replication in a dose dependent manner. Knocking down of HO-1 rescued SVCV replication. Thereby, the antiviral activity of ROS/Nrf2/HO-1 axis was confirmed in EPC cells. Furthermore, HO-1 enzymatic products CO, but not biliverdin, markedly inhibited SVCV replication via the activation of cyclic GMP/protein kinase G signaling pathway. Collectively, these findings suggest potential drug or therapy that induced the Nrf2/HO-1/CO/cGMP/PKG signaling pathway as a promising strategy for treating SVC.

Related Topics

    loading  Loading Related Articles