Molecular characterization and functional analysis of IL-12p40 from Chinese sea bass (Lateolabrax maculatus) under biotic and abiotic stresses

    loading  Checking for direct PDF access through Ovid

Abstract

Interleukins are critical cytokines that are ubiquitously present in both vertebrates and invertebrates and constitute the front line of host innate immunity. Here, we identified and analyzed IL-12p40 from the Chinese sea bass Lateolabrax maculatus (LmIL-12p40). The LmIL-12p40 gene is expressed as a 1386-base pair transcript that encodes a polypeptide of 321 amino acids. Transcriptional expression analysis indicated that LmIL-12p40 mRNA was ubiquitously expressed in all tested tissues and had a comparatively high expression level in immune-associated tissues (head-kidney and intestines). Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) experiments showed that, after Vibro harveyi and Streptococus agalactiae infection, LmIL-12p40 mRNA expression was significantly up-regulated in the spleen, liver and head-kidney. To further clarify the immune function of LmIL-12p40 after bacterial challenge, the recombinant LmIL-12p40 protein was acquired using a prokaryotic expression method. Furthermore, the LmIL-12p40 dimer (LmIL-12p80) could be produced via protein–protein interactions by incubating p40 monomer expressed from the pET28a vector (pET28a-LmIL-12p40) with p40 monomer expressed from the pGEX4T-1 vector (pGEX4T-1-LmIL-12p40). The antimicrobial activity of the purified LmIL-12p40 and LmIL-12p80 proteins were further studied in vitro using a bacterial growth inhibition test (for both liquid and solid cultures) and in vivo (using a bacterial growth inhibition test with the head-kidney tissues). Furthermore, BL21 (DE3) E. coli cells transformed with the recombinant pET28a-LmIL-12p40 vector were dramatically protected in response to metal toxicity and H2O2-related oxidative stress. In summary, this study will provide foundational information regarding the role of LmIL-12p40 in defending against various biotic and abiotic stresses in fishes, which should help to further clarify the functional mechanism of interleukins.

Related Topics

    loading  Loading Related Articles