Morphoscopic analysis of experimentally produced bony wounds from low-velocity ballistic impact

    loading  Checking for direct PDF access through Ovid

Abstract

Understanding how bone behaves when subjected to ballistic impact is of critical importance for forensic questions, such as the reconstruction of shooting events. Yet the literature addressing microscopic anatomical features of gunshot wounds to different types of bone is sparse. Moreover, a biomechanical framework for describing how the complex architecture of bone affects its failure during such impact is lacking. The aim of this study was to examine the morphological features associated with experimental gunshot wounds in slaughtered pig ribs. We shot the 4th rib of 12 adult pigs with .22 mm subsonic bullets at close range (5 cm) and examined resultant wounds under the light microscope, scanning electron microscope SEM and micro tomograph μCT. In all cases there was a narrow shot channel followed by spall region, with evidence of plastic deformation with burnishing of the surface bone in the former, and brittle fracture around and through individual Haversian systems in the latter. In all but one case, the entrance wounds were characterized by superficially fractured cortical bone in the form of a well-defined collar, while the exit wounds showed delamination of the periosteum. Inorganic residue was evident in all cases, with electron energy dispersive spectroscopy EDS confirming the presence of carbon, phosphate, lead and calcium. This material appeared to be especially concentrated within the fractured bony collar at the entrance. We conclude that gunshot wounds in flat bones may be morphologically divided into a thin burnished zone at the entry site, and a fracture zone at the exit.

Related Topics

    loading  Loading Related Articles