Quantification of Aperture and Relations Between Aperture, Normal Stress and Fluid Flow for Natural Single Rock Fractures

    loading  Checking for direct PDF access through Ovid

Abstract

Accurate quantification of rock fracture aperture is important in investigating hydro-mechanical properties of rock fractures. Liquefied wood's metal was used successfully to determine the spatial distribution of aperture with normal stress for natural single rock fractures. A modified 3D box counting method is developed and applied to quantify the spatial variation of rock fracture aperture with normal stress. New functional relations are developed for the following list: (a) Aperture fractal dimension versus effective normal stress; (b) Aperture fractal dimension versus mean aperture; (c) Fluid flow rate per unit hydraulic gradient per unit width versus mean aperture; (d) Fluid flow rate per unit hydraulic gradient per unit width versus aperture fractal dimension. The aperture fractal dimension was found to be a better parameter than mean aperture to correlate to fluid flow rate of natural single rock fractures. A highly refined variogram technique is used to investigate possible existence of aperture anisotropy. It was observed that the scale dependent fractal parameter, Kv, plays a more prominent role than the fractal dimension, Da1d, on determining the anisotropy pattern of aperture data. A combined factor that represents both Da1d and Kv, Da1d × Kv, is suggested to capture the aperture anisotropy.

Related Topics

    loading  Loading Related Articles