Experimental Study of Bearing Capacity of Granular Soils, Reinforced with Innovative Grid-Anchor System

    loading  Checking for direct PDF access through Ovid


The pull-out resistance of reinforcing elements is one of the most significant factors in increasing the bearing capacity of geosynthetic reinforced soils. In this research a new reinforcing element that includes elements (anchors) attached to ordinary geogrid for increasing the pull-out resistance of reinforcements is introduced. Reinforcement therefore consists of geogrid and anchors with cubic elements that attached to the geogrid, named (by the authors) Grid-Anchor. A total of 45 load tests were performed to investigate the bearing capacity of square footing on sand reinforced with this system. The effect of depth of the first reinforcement layer, the vertical spacing, the number and width of reinforcement layers, the distance that anchors are effective, effect of relative density, low strain stiffness and stiffness after local shear were investigated. Laboratory tests showed that when a single layer of reinforcement is used there is an optimum reinforcement embedment depth for which the bearing capacity is the greatest. There also appeared to be an optimum vertical spacing of reinforcing layers for multi-layer reinforced sand. The bearing capacity was also found to increase with increasing number of reinforcement layer, if the reinforcement were placed within a range of effective depth. The effect of soil density also is investigated. Finally the results were compared with the bearing capacity of footings on non-reinforced sand and sand reinforced with ordinary geogrid and the advantages of the Grid-Anchor were highlighted. Test results indicated that the use of Grid-Anchor to reinforce the sand increased the ultimate bearing capacity of shallow square footing by a factor of 3.0 and 1.8 times compared to that for un-reinforced soil and soil reinforced with ordinary geogrid, respectively.

Related Topics

    loading  Loading Related Articles