A unifying coordinate family for the Kerr–Newman metric


    loading  Checking for direct PDF access through Ovid

Abstract

A new unified metric form is presented for the Kerr–Newman geometry. The new form is a generalization of the Boyer–Lindquist metric involving an arbitrary gauge function of the spheroidal radial variable. Each choice of the gauge function corresponds to a coordinate system including four of the most important coordinate systems for Kerr–Newman (Boyer–Lindquist, Kerr, Kerr–Schild and Doran coordinates). The representation is given in terms of a single Minkowski frame together with the gauge function. This Minkowski frame arises by boosting a static orthonormal frame which is adapted to spheroidal coordinates. Properties of the boost reflect the rotating nature of the Kerr–Newman solution including an identification of the angular velocities of the disk and the horizon matching previously known values obtained in other ways.

    loading  Loading Related Articles