7-Ketocholesterol-induced lysosomal dysfunction exacerbates vascular smooth muscle cell calcification via oxidative stress

    loading  Checking for direct PDF access through Ovid


Vascular calcification is known to reduce the elasticity of aorta. Several studies have suggested that autophagy–lysosomal pathway (ALP) in vascular smooth muscle cells (VSMCs) is associated with vascular calcification. A major component of oxidized low-density lipoproteins, 7-ketocholesterol (7-KC), has been reported to promote inorganic phosphorus (Pi)-induced vascular calcification and induce ALP. The aim of this study was to unravel the relationship between ALP and the progression of calcification by 7-KC. Calcification of human VSMCs was induced by Pi stimulation in the presence or absence of 7-KC. FACS analysis showed that 7-KC-induced apoptosis at a high concentration (30 μM), but not at a low concentration (15 μM). Interestingly, 7-KC promoted calcification in VSMCs regardless of apoptosis. Immunoblotting and immunostaining showed that 7-KC inhibits not only the fusion of autophagosomes and lysosomes but also causes a swell of lysosomes with the reduction of cathepsin B and D. Moreover, lysosomal protease inhibitors exacerbated the apoptosis-independent calcification by 7-KC although inhibition of autophagosome formation byAtg5siRNA did not. Finally, the 7-KC-induced progression of calcification was alleviated by the treatment with antioxidant. Taken together, our data showed that 7-KC promotes VSMC calcification through lysosomal-dysfunction-dependent oxidative stress.

    loading  Loading Related Articles