Chromosome plasticity in : Chromosome 1 evolution and heterochromatin variationCtenomys: Chromosome 1 evolution and heterochromatin variation (Rodentia Octodontidae): Chromosome 1 evolution and heterochromatin variation

    loading  Checking for direct PDF access through Ovid

Abstract

A chromosome 1 (Cr1) pericentric inversion is described in six of seven species in the genus Ctenomys (tuco-tucos) from Uruguay. The inversion was inferred from G-band analyses of subtelocentric Cr1 hypothesised to be derived from the ancestral metacentric condition. Cr1 varies across species in heterochromatin amount and localisation including a metacentric chromosome without positive C-bands in C. torquatus, a subtelocentric chromosome with heterochromatic short arms in C. rionegrensis, and a subtelocentric chromosome negative after C-banding in five of the species analysed here. Pachytene chromosomes from C. rionegrensis, a species with the highest heterochromatin content, and C. torquatus, one of the species with the lowest heterochromatin content, were analysed in order to assess possible mechanisms of heterochromatin evolution. This analysis revealed the presence of three heterochromatic chromocenters in C. rionegrensis where bivalents converge, while in C. torquatus only one chromocenter was observed. In both species, highly repetitive DNA was observed, localised in chromocenters after “in situ” hybridisation. Heterochromatin associated protein M31 was localised in chromocenters of both species after immuno-detection. The spread of heterochromatin in Ctenomys chromosomes could be produced by chromatin exchanges at the chromocenter level. We propose the exchange of this DNA associated proteins between non-homologous chromosomes in pachytene to be the responsible for the spread of heterochromatin through the karyotypes of species like C. rionegrensis

Related Topics

    loading  Loading Related Articles