Associations between environmental stress, selection history, and quantitative genetic variation in Drosophila melanogaster

    loading  Checking for direct PDF access through Ovid

Abstract

Stressful environments may increase quantitative genetic variation in populations by promoting the expression of genetic variation that has not previously been eliminated or canalized by natural selection. This “selection history” hypothesis predicts that novel stressors will increase quantitative genetic variation, and that the magnitude of this effect will decrease following continued stress exposure. We tested these predictions using Drosophila melanogaster and sternopleural bristle number as a model system. In particular, we examined the effect of high temperature stress (31°C) on quantitative genetic variation before and after our study population had been reared at 31°C for 15 generations. High temperature stress was found to increase both additive genetic variance and heritability, but contrary to the selection history hypothesis prediction, the magnitude of this effect significantly increased after the study population had been reared for 15 generations under high temperature stress. These results demonstrate that high temperature stress increases quantitative genetic variation for bristle number, but do not support the selection history hypothesis as an explanation for this effect.

Related Topics

    loading  Loading Related Articles