Perturbation-based moveout approximations in anisotropic media

    loading  Checking for direct PDF access through Ovid

Abstract

The moveout approximations play an important role in seismic data processing. The standard hyperbolic moveout approximation is based on an elliptical background model with two velocities: vertical and normal moveout. We propose a new set of moveout approximations based on a perturbation series in terms of anellipticity parameters using the alternative elliptical background model defined by vertical and horizontal velocities. We start with a transversely isotropic medium with a vertical symmetry axis. Then, we extend this approach to a homogeneous orthorhombic medium. To define the perturbation coefficients for a new background, we solve the eikonal equation with horizontal velocities in transversely isotropic medium with a vertical symmetry axis and orthorhombic media. To stabilise the perturbation series and improve the accuracy, the Shanks transform is applied for all the cases. We select different parameterisations for both velocities and anellipticity parameters for an orthorhombic model. From the comparison in traveltime error, the new moveout approximations result in better accuracy comparing with the standard perturbation-based methods and other approximations.

Related Topics

    loading  Loading Related Articles