Kinematic Magnetic Resonance Imaging Assessment of the Degenerative Cervical Spine: Changes after Anterior Decompression and Cage Fusion

    loading  Checking for direct PDF access through Ovid


Study Design

A prospective cohort study.


Decompression and fusion of cervical vertebrae is a combined procedure that has a high success rate in relieving radicular symptoms and stabilizing or improving cervical myelopathy. However, fusion may lead to increased motion of the adjacent vertebrae and cervical deformity. Both have been postulated to lead to adjacent segment pathology (ASP). Kinematic magnetic resonance imaging (MRI) has been increasingly used to evaluate range of motion (ROM) of the cervical spine and ASP. Our objective was to measure ASP, cervical curvature, and ROM of individual segments of the cervical spine using kinematic MRI before and 24 months after monosegmental cage fusion.


Eighteen patients who had single-level interbody fusion were included. ROM (using kinematic MRI) and degeneration, spinal stenosis, and cervical curvature were measured preoperatively and 24 months postoperatively.


Using kinematic MRI, segmental motion of the cervical segments was measured with a precision of less than 3 degrees. The cervical fusion did not affect the ROM of adjacent levels. However, pre- and postoperative ROM was higher at the levels immediately adjacent to the fusion level compared with those further away. In addition, at 24 months postoperatively, the number of cases with ASP was higher at the levels immediately adjacent to fusion level.


Using kinematic MRI, ROM after spinal fusion can be measured with high precision. Kinematic MRI can be used not only in clinical practice, but also to study intervention and its effect on postoperative biomechanics and ASP of cervical vertebrae.

Related Topics

    loading  Loading Related Articles