A simplified and sensitive fluorescent method for disaccharide analysis of both heparan sulfate and chondroitin/dermatan sulfates from biological samples

    loading  Checking for direct PDF access through Ovid

Abstract

Sulfated glycosaminoglycans regulate the biological functions of a wide variety of proteins, primarily through high affinity interactions mediated by specific sugar sequences or patterns/densities of sulfation. Disaccharide analysis of such glycosaminoglycans yields important diagnostic and comparative structural information on sulfate patterning. When applied to specific oligosaccharides it can also make a vital contribution to sequence elucidation. Standard UV detection of lyase-generated disaccharides resolved by HPLC can lack sufficient sensitivity and be compromised by contaminating UV signals, when dealing with scarce tissue- or cell culture-derived material. Various methods exist for improved detection, but usually involve additional HPLC hardware and often necessitate different procedures for analyzing different glycosaminoglycans. We describe a simple procedure, requiring only standard HPLC instrumentation, involving prederivatization of disaccharides with 2-aminoacridone with no cleanup of samples, followed by a separation by reverse-phase HPLC that is sensitive to as little as ∼100 pg (∼10−13 mol) of an individual disaccharide, thereby allowing analyses of >10 ng of total glycosaminoglycan. Importantly, separate analysis of both HS/heparin and CS/DS species within a mixed glycosaminoglycan pool can be performed using the same procedure on a single column. We demonstrate its applicability in dealing with small quantities of material derived from rat liver (where we demonstrate a high abundance of the unusual CS-E species within the CS/DS pool) and MDCK cells (which revealed a HS species of relatively low N-sulfation, but high O-sulfation). This simplified method should find a widespread utility for analyzing glycosaminoglycans from limited animal and cell culture samples.

Related Topics

    loading  Loading Related Articles