Polysialylation of NCAM correlates with onset and termination of seasonal spermatogenesis in roe deer

    loading  Checking for direct PDF access through Ovid

Abstract

Roe deer (Capreolus capreolus) are seasonal breeders and cyclic structural changes of roe bucks' testis come along with a totally arrested (winter) and a highly activated spermatogenesis (summer). For this reason, roe buck represents an interesting model to study general mechanisms of initiation and termination of spermatogenesis. We investigated if polysialic acid (polySia)—a linear homopolymer of α2,8-linked sialic acids, which could act as a negative regulator of cell–cell adhesion—might be involved in the activation and/or inactivation of spermatogenesis. To address this point, testis samples of adult male roe deer were collected at different time point of the year. Intriguingly, we observed that polySia attached to the neural cell adhesion molecule was enhanced during the onset of spermatogenesis in April. In addition, polySia was highly expressed in December. Predominantly, polySia was detectable between Sertoli cells and spermatogonia in the basal regions of testicular tubules and in the adluminal part of Sertoli cells. Interestingly, similar polySia distributions were observed during early testis development of other mammalians when gonocytes (pre-spermatogonia) and Sertoli cells represent the only cell populations in tubuli seminiferi. Thus, polySia is expressed during key steps of the “on/off mechanisms” of spermatogenesis and might represent one mediator of the interaction and communication between Sertoli cells and germ cell precursors.

Related Topics

    loading  Loading Related Articles