In vitro biological characterization of IFN-β-1a major glycoforms

    loading  Checking for direct PDF access through Ovid

Abstract

Recombinant human interferon β-1a (IFN-β-1a) is extensively used as the first-line treatment of relapsing forms of multiple sclerosis. Its glycosylation is recognized as having a complex impact on a wide range of molecule characteristics and functions. The present study reports the enrichment of IFN-β-1a glycoforms and their physicochemical and biological characterization by means of electrospray ionization-mass spectrometry, sialic acid content, thermal denaturation and various in vitro bioassays (antiproliferative, antiviral, immunomodulatory and reporter gene assay). The glycoforms were fractionated by means of cation-exchange chromatography using recombinant IFN-β-1a derived from Chinese Hamster Ovary cell culture as starting material. The obtained fractions contained bi- and higher-antennarity glycans as described in the European Pharmacopoeia monograph (Nr. 1639E, Interferon beta 1a concentrated solution). The in vitro bioassay responses revealed a correlation mainly with the glycan antennarity. It is therefore suggested that all glycoforms have biological activity and play a role in modulating the overall IFN-β biological activity with higher-antennarity glycoforms being able to better sustain IFN-β-1a bioactivity over time. These data indicate the role of IFN-β-1a glycosylation in vivo and shed new light on the role of the glycosylation heterogeneity, in particular with regard to antennarity, on biological properties of glycoproteins.

Related Topics

    loading  Loading Related Articles