Serum microRNAs explain discordance of non-alcoholic fatty liver disease in monozygotic and dizygotic twins: a prospective study

    loading  Checking for direct PDF access through Ovid

Abstract

Objective

In the setting where two individuals are genetically similar, epigenetic mechanisms could account for discordance in the presence or absence of non-alcoholic fatty liver disease (NAFLD). This study investigated if serum microRNAs (miRs) could explain discordance in NAFLD.

Design

This is a cross-sectional analysis of a prospective cohort study of 40 (n=80) twin-pairs residing in Southern California. All participants underwent a standardised research visit, liver MRI using proton-density fat fraction to quantify fat content and miR profiling of their serum.

Results

Among the 40 twin-pairs, there were 6 concordant for NAFLD, 28 were concordant for non-NAFLD and 6 were discordant for NAFLD. The prevalence of NAFLD was 22.5% (18/80). Within the six discordant twins, a panel of 10 miRs differentiated the twin with NAFLD from the one without. Two of these miRs, miR-331-3p and miR-30c, were also among the 21 miRs that were different between NAFLD and non-NAFLD groups (for miR-331-3p: 7.644±0.091 vs 8.057±0.071, respectively, p=0.004; for miR-30c: 10.013±0.126 vs 10.418±0.086, respectively, p=0.008). Both miRs were highly heritable (35.9% and 10.7%, respectively) and highly correlated with each other (R=0.90, p=2.2×10−16) suggesting involvement in a common mechanistic pathway. An interactome analysis of these two miRs showed seven common target genes.

Conclusions

Using a novel human twin-study design, we demonstrate that discordancy in liver fat content between the twins can be explained by miRs, and that they are heritable.

Related Topics

    loading  Loading Related Articles