100 Neonatal micro-rna profile determines endothelial function in offspring of hypertensive pregnancies

    loading  Checking for direct PDF access through Ovid



Offspring of hypertensive pregnancies are at increased risk of developing hypertension in adulthood. In the neonatal period they display endothelial cell dysfunction and altered microvascular development. MicroRNAs, as important endothelial cellular regulators, may play a role in this early endothelial dysfunction.


To identify differential microRNA patterns in endothelial cells from offspring of hypertensive pregnancies and determine their role in postnatal vascular cell function.

Methods and results

Studies were performed on human umbilical vein endothelial cell (HUVECs) samples from 57 pregnancies. Unbiased RNA-sequencing identified 30 endothelial-related microRNAs differentially expressed in HUVECs from hypertensive compared to normotensive pregnancies. Quantitative reverse transcription PCR (RT-qPCR) confirmed a significant higher expression level of the top candidate, miR-146a. Combined miR-146a targeted gene expression and pathway analysis revealed significant alterations in genes involved in inflammation, angiogenesis and immune response in the same HUVECs. Elevated miR-146a expression level at birth identified cells with reduced ability for in vitro vascular tube formation, which was rescued by miR-146a inhibition. In contrast, miR-146a overexpression significantly reduced vascular tube formation in HUVECs from normotensive pregnancies. Finally, we confirmed that mir146a levels at birth predicted in vivo microvascular development during the first three postnatal months.


Offspring of hypertensive pregnancies have a distinct endothelial regulatory microRNA profile at birth, which is related to an altered endothelial cell behaviour, and predicts patterns of microvascular development during the first three months of life. Modification of this microRNA profile in vitro can restore impaired vascular cell function.

Related Topics

    loading  Loading Related Articles