A decisional space for fMRI pattern separation using the principal component analysis—a comparative study of language networκs in pediatric epilepsy

    loading  Checking for direct PDF access through Ovid

Abstract

Atypical functional magnetic resonance imaging (fMRI) language patterns may be identified by visual inspection or by region of interest (ROI)-based laterality indices (LI) but are constrained by a priori assumptions. We compared a data-driven novel application of principal component analysis (PCA) to conventional methods. We studied 122 fMRI data sets from control and localization-related epilepsy patients provided by five children's hospitals. Each subject performed an auditory description decision tasκ. The data sets, acquired with different scanners but similar acquisition parameters, were processed through fMRIB software library to obtain 3D activation maps in standard space. A PCA analysis was applied to generate the decisional space and the data cluster into three distinct activation patterns. The classified activation maps were interpreted by (1) blinded reader rating based on predefined language patterns and (2) by language area ROI-based LI (i.e., fixed threshold vs. bootstrap approaches). The different classification results were compared through &κgr; inter-rater agreement statistics. The unique decisional space classified activation maps into three clusters (a) lower intensity typical language representation, (b) higher intensity typical, as well as (c) higher intensity atypical representation. Inter-rater agreements among the three raters were excellent (Fleiss &κgr; = 0.85, P = 0.05). There was substantial to excellent agreement between the conventional visual rating and LI methods (&κgr; = 0.69–0.82, P = 0.05). The PCA-based method yielded excellent agreement with conventional methods (&κgr; = 0.82, P = 0.05). The automated and data-driven PCA decisional space segregates language-related activation patterns in excellent agreement with current clinical rating and ROI-based methods. Hum Brain Mapp 34:2330–2342, 2013. © 2012 Wiley Periodicals, Inc.

Related Topics

    loading  Loading Related Articles