Structure and locomotion of adult in vitro regenerated spiral ganglion growth cones – A study using video microscopy and SEM

    loading  Checking for direct PDF access through Ovid


Neuronal development and neurite regeneration depends on the locomotion and navigation of nerve growth cones (GCs). There are few detailed descriptions of the GC function and structure in the adult auditory system. In this study, GCs of adult dissociated and cultured spiral ganglion (SG) neurons were analyzed in vitro utilizing combined high resolution scanning electron microscopy (SEM) and time lapse video microscopy (TLVM). Axon kinesis was assessed on planar substratum with growth factors BDNF, NT-3 and GDNF. At the nano-scale level, lamellipodial abdomen of the expanding GC was found to be decorated with short surface specializations, which at TLVM were considered to be related to their crawling capacity. Filopodia were devoid of these surface structures, supporting its generally described sensory role. Microspikes appearing on lamellipodia and axons, showed circular adhesions, which at TLVM were found to provide anchorage of the navigating and turning axon. Neurons and GCs expressed the DCC-receptor for the guidance molecule netrin-1. Asymmetric ligand-based stimulation initiated turning responses suggest that this attractant cue influences steering of GC in adult regenerating auditory neurites. Hopefully, these findings may be used for ensuing tentative navigation of spiral ganglion neurons to induce regenerative processes in the human ear.

Related Topics

    loading  Loading Related Articles