An improved simplified approach for curing kinetics of epoxy resins by nonisothermal differential scanning calorimetry

    loading  Checking for direct PDF access through Ovid

Abstract

The curing kinetics of two different types of commercial epoxy resins were investigated by means of nonisothermal differential scanning calorimetry (DSC) in this work. The complex curve of measured heat flow of CYCOM 970 epoxy resin was simplified with the method of resolution of peak. Two typical autocatalytic curing reaction curves were gained and the kinetic parameters of the curing process were demonstrated by combination of those two reactions. The Kissinger method was adopted to obtain the values of the activation energy. The parameters of curing kinetic model were acquired according to the fitting of Kamal model. Isothermal DSC curve of CYCOM 970 epoxy resin obtained using the experimental data shows a good agreement with that theoretically calculated. Then, 603 epoxy resin was investigated by the simplified method and the kinetic parameters were received through the same procedure. The nonisothermal DSC curve tested according to the recommended cure cycle of 603 epoxy resin is also consistent with the calculated results. This improved simplified approach provides an effective method to analyze the curing kinetics of the epoxy resins with complex DSC curves as similar to this study.

Related Topics

    loading  Loading Related Articles