Medial and Lateral Perforant Path Evoked Potentials Are Selectively Modulated by Pairing with Glutamatergic Activation of Locus Coeruleus in the Dentate Gyrus of the Anesthetized Rat

    loading  Checking for direct PDF access through Ovid

Abstract

Norepinephrine (NE) in vitro produces long-lasting potentiation of medial perforant path input and depression of lateral perforant path input to dentate gyrus in the rat. Similar, but highly transient, effects have been reported in vivo using paragigantocellular stimulation to release NE. The present study uses alternate stimulation of the medial perforant path and lateral olfactory tract (eliciting a lateral perforant path-evoked potential) to examine the effects of glutamatergic activation of locus coeruleus (LC) on the two pathways for up to 3 h post-LC activation. In the first experiment, the expected potentiation of the medial perforant path population spike in dentate gyrus was observed, but without accompanying depression of the lateral perforant path-mediated evoked potential (lateral olfactory tract stimulation, 60 s ISI). In a second experiment, with more frequent pairing of input with NE release (10 s ISI), significant potentiation of lateral perforant path-mediated input to dentate gyrus occurred, but potentiation of medial perforant path input was not seen. A third experiment with a 30 s ISI again produced potentiation of lateral perforant path-mediated input without potentiation of the medial perforant path population spike. The size of effects with the 30 s ISI was intermediate between that seen with 10 s and 60 s ISI. Potentiation of lateral perforant path over medial perforant path input has previously been reported with acute nicotinic activation of the LC. This outcome also resembles heterosynaptic modulation previously reported with tetanic potentiation. The data argue for a competitive relationship between medial and lateral perforant path inputs to dentate gyrus and suggest pairing with increased NE produces a bias favoring one or the other pathway depending on parameters such as strength and frequency. NE potentiating effects on lateral perforant path input here may also have occurred in entorhinal cortex (EC) given the system-wide NE release with LC activation.

Related Topics

    loading  Loading Related Articles