Human-specific microRNA regulation of FOXO1: implications for microRNA recognition element evolution

    loading  Checking for direct PDF access through Ovid

Abstract

MicroRNAs (miRNAs) have been established as important negative post-transcriptional regulators for gene expression. Within the past decade, miRNAs targeting transcription factors (TFs) has emerged as an important mechanism for gene expression regulation. Here, we tested the hypothesis that in TF 3′UTRs, human-specific single nucleotide change(s) that create novel miRNA recognition elements (MREs) contribute to species-specific differences in TF expression. From several potential human-specific TF MREs, one candidate, a member of the Forkhead Box O (FOXO) subclass in the Forkhead family known as Forkhead Box O1 (FOXO1; FKHR; NM_002015) was tested further. Human FOXO1 contains two sites predicted to confer miR-183-mediated post-transcriptional regulation: one specific to humans and the other conserved. Utilizing dual luciferase expression reporters, we show that only the human FOXO1 3′UTR contains a functional miR-183 site, not found in chimpanzee or mouse 3′untranslated regions (UTRs). Site-directed mutagenesis supports functionality of the human-specific miR-183 site, but not the conserved miR-183 site. Via overexpression and target site protection assays, we show that human FOXO1 is regulated by miR-183, but mouse FOXO1 is not. Finally, FOXO1-regulated cellular phenotypes, including cell invasion and proliferation, are impacted by miR-183 targeting only in human cells. These results provide strong evidence for human-specific gain of TF MREs, a process that may underlie evolutionary differences between phylogenic groups.

Related Topics

    loading  Loading Related Articles