Anti-androgenic effects of bisphenol-A on spatial memory and synaptic plasticity of the hippocampus in mice

    loading  Checking for direct PDF access through Ovid


Bisphenol-A (BPA) is a common environmental endocrine disruptor. Our recent studies found that exposure to BPA in both adolescent and adulthood sex-specifically impaired spatial memory in male mice. In this study, 11-week-old gonadectomied (GDX) male mice daily received subcutaneous injections of testosterone propionate (TP, 0.5 mg/kg), TP and BPA (0.4 and 4 mg/kg), or vehicle for 45 days. The results of Morris water maze task showed that exposure to BPA did not affect the spatial memory of GDX mice but impaired that of sham (4 mg/kg/day) and TP-treated GDX mice (0.4 mg/kg/day). In addition, BPA reduced the level of testosterone (T) in the serum and brain of sham and TP-treated GDX mice. Exposure to BPA decreased the synaptic density and had an adverse effect on the synaptic interface of the hippocampus in sham and TP-treated GDX mice. The results of western blot analysis further showed that BPA (4 mg/kg) reduced the levels of synaptic proteins (synapsin I and PSD-95) and NMDA receptor subunit NR2B in sham and TP-treated GDX mice. BPA decreased the phosphorylation of ERK1/2 but increased the phosphorylation of p38 in sham and TP-treated GDX mice. These results suggest that impairment of spatial memory and adverse effects on synaptic remodeling of hippocampal neurons in males after long-term BPA exposure is related to the anti-androgen effect of BPA. These effects of BPA may be associated with downregulated synaptic proteins and NMDA receptor through inhibiting ERKs and promoting the p38 pathways.

Related Topics

    loading  Loading Related Articles