Chronic stress leads to long-lasting deficits in olfactory-guided behaviors, and to neuroplastic changes in the nucleus of the lateral olfactory tract

    loading  Checking for direct PDF access through Ovid

Abstract

A recent study reported that the integrity of the nucleus of the lateral olfactory tract (nLOT) is required for normal olfaction and for the display of odor-driven behaviors that are critical for species survival and reproduction. In addition to being bi-directionally connected with a key element of the neural circuitry that mediates stress response, the basolateral nucleus of the amygdala, the nLOT is a potential target for glucocorticoids as its cells express glucocorticoid receptors. Herein, we have addressed this hypothesis by exploring, first, if chronic variable stress (CVS) disrupts odor detection and discrimination, and innate olfactory-driven behaviors, namely predator avoidance, sexual behavior and aggression in male rats. Next, we examined if CVS alters the nLOT structure and if such changes can be ascribed to stress-induced effects on the activity of the main output neurons, which are glutamatergic, and/or of local GABAergic interneurons. Finally, we analyzed if the stress-induced changes are transient or, conversely, persist after cessation of CVS exposure. Our data demonstrate that CVS leads to severe olfactory deficits with inability to detect and discriminate between odors and to innately avoid predator odors. No effects of CVS on sexual and aggressive behaviors were observed. Results also showed that CVS leads to somatic hypertrophy of pyramidal glutamatergic neurons, which likely results from neuronal disinhibition consequent to the loss of inhibitory inputs mediated by GABAergic interneurons. Most of the CVS-induced effects persist beyond a 4-week stress-free period, suggesting long-lasting effects of chronic stress on the structure and function of the olfactory system.

Related Topics

    loading  Loading Related Articles