First implication ofSTRA6mutations in isolated anophthalmia, microphthalmia, and coloboma: A new dimension to theSTRA6phenotype

    loading  Checking for direct PDF access through Ovid

Abstract

Microphthalmia, anophthalmia, and coloboma (MAC) are structural congenital eye malformations that cause a significant proportion of childhood visual impairments. Several disease genes have been identified but do not account for all MAC cases, suggesting that additional risk loci exist. We used single nucleotide polymorphism (SNP) homozygosity mapping (HM) and targeted next-generation sequencing to identify the causative mutation for autosomal recessive isolated colobomatous microanophthalmia (MCOPCB) in a consanguineous Irish Traveller family. We identified a double-nucleotide polymorphism (g.1157G>A and g.1156G>A; p.G304K) inSTRA6that was homozygous in all of the MCOPCB patients. TheSTRA6p.G304K mutation was subsequently detected in additional MCOPCB patients, including one individual with Matthew-Wood syndrome (MWS; MCOPS9).STRA6encodes a transmembrane receptor involved in vitamin A uptake, a process essential to eye development and growth. We have shown that the G304K mutant STRA6 protein is mislocalized and has severely reduced vitamin A uptake activity. Furthermore, we reproduced the MCOPCB phenotype in a zebrafish disease model by inhibiting retinoic acid (RA) synthesis, suggesting that diminished RA levels account for the eye malformations in STRA6 p.G304K patients. The current study demonstrates thatSTRA6mutations can cause isolated eye malformations in addition to the congenital anomalies observed in MWS. 32:1417–1426, 2011. ©2011 Wiley Periodicals, Inc.

Related Topics

    loading  Loading Related Articles