A rainfall-runoff model parameterized from GIS and runoff data

    loading  Checking for direct PDF access through Ovid

Abstract

A guiding principle in hydrological modelling should be to keep the number of calibration parameters to a minimum. A reduced number of parameters to be calibrated, while maintaining the accuracy and detail required by modern hydrological models, will reduce parameter and model structure uncertainty and improve model diagnostics. In this study, the dynamics of runoff are derived from the distribution of distances from points in the catchments to the nearest stream. This distribution is unique for each catchment and can be determined from a geographical information system. The distribution of distances, will, when a celerity of (subsurface) flow is introduced, provide a distribution of travel times, or a unit hydrograph (UH). For spatially varying levels of saturation deficit, we have different celerities and, hence, different UHs. Runoff is derived from the superposition of the different UHs. This study shows how celerities can be estimated if we assume that recession events represent the combined UHs for different levels of saturation deficit. A new soil moisture routine which estimates saturated and unsaturated volumes of subsurface water and with only one parameter to calibrate is included in the new model. The performance of the new model is compared with that of the Swedish HBV model and is found to perform equally well for eight Norwegian catchments although the number of parameters to be calibrated in the module concerning soil moisture and runoff dynamics is reduced from seven in the HBV model to one in the new model. It is also shown that the new model has a more realistic representation of the subsurface hydrology. Copyright © 2013 John Wiley & Sons, Ltd.

Related Topics

    loading  Loading Related Articles