Goat trampling affects plant establishment, runoff and sediment yields over crusted dunes

    loading  Checking for direct PDF access through Ovid


Mainly attributed to goat and sheep trampling, the sand dunes at the Israeli and the Egyptian sides of the border present contrasting geomorphological conditions. In an attempt to assess the trampling effect upon vegetation, runoff and sediment yield, two pairs of plots and miniplots (each pair contains a trampled plot and a control) were constructed during 1991 and monitored during 1991–1995. In order to assess the impact on vegetation, three pairs of vegetation plots, subjected to light, medium and heavy trampling, were established during 1993 and monitored. In addition, the effect of the micro structures created by the goat hooves (mounds and depressions) were studied in three pairs of plots subjected to medium trampling during 1993 and monitored during 1993–1996. As far as trampling intensity is concerned, the findings indicate an increase in species diversity, density and biomass from the intact crusted surface to the plots subjected to light and medium trampling with a decrease thereafter at the plots subjected to heavy trampling. As for the micro scale, the findings indicate significantly higher plant biomass for the first 2 years at the hooves-formed mini mounds and mini depressions in comparison to intact crusted surfaces, with no significant difference during the third year. Significantly lower runoff and sediment yields characterized the trampled plots implying a reduction in water redistribution. The data point to the differential effect that trampling has upon plants and soil. While increasing annual plant growth along the slope, it hinders runoff flow to the footslope, negatively affecting water availability for footslope vegetation. Recovery, as also supported by chlorophyll and microrelief measurements, was scale dependent (attributed to differential supply of aeolian sand) with estimated recovery for the plots and miniplots being 4–5 and 8–10 years, respectively. The data indicate that upon the cessation of grazing and under similar precipitation regime, recovery time of the biocrust in the Sinai sand dunes may be short, within 5–6 years. Copyright © 2016 John Wiley & Sons, Ltd.

Related Topics

    loading  Loading Related Articles