Shift trend and step changes for runoff time series in the Shiyang River basin, northwest China


    loading  Checking for direct PDF access through Ovid

Abstract

Shift trend and step changes were detected for runoff time series in the Shiyang River basin, one of the inland river basins in north-west China. Annual runoff data from eight tributaries as well as both annual and monthly runoff from the mainstream from 1958 to 2003 were used. Seven statistical test methods were employed to identify the shift trends and step changes in the study. Mann-Kendall test, Spearman's Rho test, linear regression and Hurst exponent were used to detect past and future shift trends for runoff time series, while the distributed-free CUSUM test, cumulative deviations and the Worsley likelihood ratio test were used to detect step changes for the same time series. Results showed that the annual runoff from Zamu, Huangyang and Gulang rivers, as well as both annual and monthly runoff from the mainstream, show statistically significant decreasing trends. Future tendency of runoff for both tributaries and mainstream were consistent with that from 1958 to 2003. Step changes probably occurred in 1961 for the runoff from Huangyang, Gulang and Dajing rivers according to the Worsley likelihood ratio test, but no similar results were found using the other two test methods. Three change points (1979, 1974 and 1973) were detected for the mainstream using different methods. These change points were close to the years that reservoirs started to be operated. Both climate change and human activities, especially the latter, contributed to the decreasing runoff in the study area. Between 21% and 79% of the reduction in runoff from the mainstream was due to the impact of human activities during the past few decades.

    loading  Loading Related Articles