Influence of water flux and redox conditions on chlorobenzene concentrations in a contaminated streambed

    loading  Checking for direct PDF access through Ovid


Significant natural attenuation may occur on the passage of groundwater plumes through streambed sediments because of the transition from anaerobic to aerobic conditions and an increased microbial activity. Varying directions and magnitudes of water flow in the streambed may enhance or inhibit the supply of oxygen to the streambed and thus influence the redox zoning. In a field study at a small stream in the industrial area of Bitterfeld-Wolfen, we observed the variability of hydraulic gradients, streambed temperatures, redox conditions and monochlorobenzene (MCB) concentrations in the streambed over the course of 5 months. During the observation period, the hydrologic conditions changed from losing to gaining. Accordingly, the temperature-derived water fluxes changed from recharge to discharge. Redox conditions were highly variable between − 170 and 368 mV in the shallow streambed at a depth of 0·1 m below the streambed surface. Deeper in the streambed, at depths of 0·3 m and 0·5 m, the redox conditions were more stable between − 198 and − 81 mV and comparable to those typically found in the aquifer. MCB concentrations in the streambed at 0·3 and 0·5 m depth increased with increasing upward water flux. The MCB concentrations in the shallow streambed at 0·1 m depth appeared to be independent of the hydrologic conditions suggesting that degradation of MCB may have occured. Copyright © 2010 John Wiley & Sons, Ltd.

    loading  Loading Related Articles