Mössbauer study of ferromagnetic metallic glasses irradiated by swift heavy ions at temperatures 100 and 300 K

    loading  Checking for direct PDF access through Ovid

Abstract

The effect of swift heavy ion irradiation on ferromagnetic metallic glasses Fe40Ni38Mo4B18 and Fe78Si9B13 has been studied. The ion beams used are 100 MeV 127I and 180 MeV 197Au. The specimens were irradiated at fluences ranging from 3 × 1012 to 1.5 × 1014 ions/cm2. The irradiations have been carried out at temperatures 100 and 300 K. The magnetic moments are sensitive towards the irradiation conditions such as irradiation temperature and stopping power of incident ion beam. The irradiation-induced effects have been monitored, by using Mössbauer spectroscopy. The modifications in magnetic anisotropy and hyperfine magnetic field distributions, as an effect of different irradiation temperature as well as different stopping power have been discussed. After irradiation, all the samples remain amorphous and magnetic anisotropy considerably changes from its original in-plane direction. The results show enhancement in magnetic anisotropy in the specimen irradiated at 100 K, as compared to that of irradiated at 300 K. It is expected that at low temperature, the stresses produced in the material would remain un-annealed, compared to the samples irradiated at room temperature and therefore, the modification in magnetic anisotropy would be enhanced. A distribution of hyperfine magnetic field, of the samples irradiated at low temperature, show a small but distinct peak at ∼ 11 Tesla, indicating Fe-B pairing.

Related Topics

    loading  Loading Related Articles