Abstract 210: Stem Cell Conditioned Culture Media Attenuated Albumin-induced Epithelial-mesenchymal Transition in Renal Tubular Cells

    loading  Checking for direct PDF access through Ovid


Mesenchymal stem cells (MSCs) have been shown to be a promising therapy for many different diseases. Stem cell conditioned culture media (SCM) exhibit similar beneficial effects as MSCs. Albuminuria-induced epithelial-mesenchymal transition (EMT) plays an important role in progressive renal tubulointerstitial fibrosis in chronic renal disease. The present study tested the hypothesis that SCM inhibit albumin-induced EMT in cultured renal tubular cells. SCM were obtained by culturing rat adult MSCs for 3 days. Cultured renal proximal tubular cells were incubated with rat albumin (20μg/ml) and treated with SCM or control culture media. Our results showed that 48 h albumin incubation stimulated EMT in renal proximal tubular cells as shown by significant decrease in the protein levels of epithelial marker E-cadherin from 2.30 ± 0.27 to 0.87 ± 0.11 (P < 0.05) and increase in the protein levels of mesenchymal marker fibroblast-specific protein 1 (FSP-1) (2.18±0.33 folds, P < 0.05). SCM treatment significantly inhibited these albumin-induced changes in E-cadherin and FSP-1 by 2.33±0.17 and 1.95±0.23 folds (P < 0.05), respectively. Meanwhile, albumin increased the mRNA levels of pro-inflammatory factor monocyte chemoattractant protein-1 (MCP)-1 by nearly 30 folds compared with control. SCM almost abolished the increase of MCP-1 induced by albumin. Furthermore, Western blot results displayed that albumin rapidly decreased the cytosolic levels and increased the nuclear levels of NF-κB, indicating a translocation of NF-κB; immunofluorescence microscopy also demonstrated that albumin induced NF-κB translocation from the cytosol into nucleus. SCM blocked the translocation of NF-κB into nucleus. These results suggest that SCM attenuated albumin-induced EMT in renal tubular cells via inhibiting NF-κB activation and inflammation, which may serve as a new therapeutic approach for chronic kidney diseases. (Supported by NIH grant HL89563 and HL106042)

Related Topics

    loading  Loading Related Articles