Periodontal ligament fibroblast response to root perforations restored with different materials – a laboratory study

    loading  Checking for direct PDF access through Ovid



To compare the effect of several materials on the attachment of periodontal ligament (PDL) fibroblasts to experimentally perforated root surfaces.


Root specimens (size 5 × 5 mm) were obtained from extracted human molar teeth and perforations with a 1 mm diameter were created. One group was kept as a control and the rest were repaired with the following materials: Amalgam, Dyract, IRM, Super Bond C&B and Mineral trioxide aggregate (MTA). PDL fibroblasts were placed at a density of 8 × 104 cells on the root specimens, incubated on tissue culture inserts (48 h) and then transferred to 48 well-plates. MTT assays were performed at 48 and 96 h for PDL fibroblast survival. Cell attachment was observed using confocal microscopy on days 2 and 5. Total RNAs from the root specimens were isolated on day 5 and type I collagen (COL I) and Runt-related transcription factor 2 (Runx2) mRNA expressions were checked using Quantitative-Polymerase Chain Reaction (QPCR). For the MTT assay and QPCR, one-way analysis of variance (anova) and Tukey HSD multiple comparison tests were used to compare the groups.


Mineral trioxide aggregate resulted in a significantly higher cell density (P < 0.001). Dyract, IRM and Super Bond C&B groups had a lower cell density when compared with the control and MTA groups at 48 h (P < 0.001). Confocal microscopy revealed that, among the experimental groups, the MTA group had the largest viable cell population over the restoration site when compared with the other materials; however, reduced cell attachment was noted in all groups when compared with the control. Increased Runx2 mRNA expressions were noted in MTA (P < 0.001) and IRM (P < 0.01) groups when compared with control and other tested materials. COL I transcripts were increased in IRM (P < 0.01), D, C&B and MTA (P < 0.001) when compared with the control.


Mineral trioxide aggregate provided a more favorable environment for PDL cell adhesion and growth.

Related Topics

    loading  Loading Related Articles