Electroencephalographic markers of robot-aided therapy in stroke patients for the evaluation of upper limb rehabilitation

    loading  Checking for direct PDF access through Ovid


Stroke is the leading cause of permanent disability in developed countries; its effects may include sensory, motor, and cognitive impairment as well as a reduced ability to perform self-care and participate in social and community activities. A number of studies have shown that the use of robotic systems in upper limb motor rehabilitation programs provides safe and intensive treatment to patients with motor impairments because of a neurological injury. Furthermore, robot-aided therapy was shown to be well accepted and tolerated by all patients; however, it is not known whether a specific robot-aided rehabilitation can induce beneficial cortical plasticity in stroke patients. Here, we present a procedure to study neural underpinning of robot-aided upper limb rehabilitation in stroke patients. Neurophysiological recordings use the following: (a) 10–20 system electroencephalographic (EEG) electrode montage; (b) bipolar vertical and horizontal electrooculographies; and (c) bipolar electromyography from the operating upper limb. Behavior monitoring includes the following: (a) clinical data and (b) kinematic and dynamic of the operant upper limb movements. Experimental conditions include the following: (a) resting state eyes closed and eyes open, and (b) robotic rehabilitation task (maximum 80 s each block to reach 4-min EEG data; interblock pause of 1 min). The data collection is performed before and after a program of 30 daily rehabilitation sessions. EEG markers include the following: (a) EEG power density in the eyes-closed condition; (b) reactivity of EEG power density to eyes opening; and (c) reactivity of EEG power density to robotic rehabilitation task. The above procedure was tested on a subacute patient (29 poststroke days) and on a chronic patient (21 poststroke months). After the rehabilitation program, we observed (a) improved clinical condition; (b) improved performance during the robotic task; (c) reduced delta rhythms (1–4 Hz) and increased alpha rhythms (8–12 Hz) during the resting state eyes-closed condition; (d) increased alpha desynchronization to eyes opening; and (e) decreased alpha desynchronization during the robotic rehabilitation task. We conclude that the present procedure is suitable for evaluation of the neural underpinning of robot-aided upper limb rehabilitation.

Related Topics

    loading  Loading Related Articles