Airway Memory CD4+ T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses

    loading  Checking for direct PDF access through Ovid


Two zoonotic coronaviruses (CoVs)—SARS-CoV and MERS-CoV—have crossed species to cause severe human respiratory disease. Here, we showed that induction of airway memory CD4+ T cells specific for a conserved epitope shared by SARS-CoV and MERS-CoV is a potential strategy for developing pan-coronavirus vaccines. Airway memory CD4+ T cells differed phenotypically and functionally from lung-derived cells and were crucial for protection against both CoVs in mice. Protection was dependent on interferon-γ and required early induction of robust innate and virus-specific CD8+ T cell responses. The conserved epitope was also recognized in SARS-CoV- and MERS-CoV-infected human leukocyte antigen DR2 and DR3 transgenic mice, indicating potential relevance in human populations. Additionally, this epitope was cross-protective between human and bat CoVs, the progenitors for many human CoVs. Vaccine strategies that induce airway memory CD4+ T cells targeting conserved epitopes might have broad applicability in the context of new CoVs and other respiratory virus outbreaks.

Related Topics

    loading  Loading Related Articles