Deficient Activity of the Nuclease MRE11A Induces T Cell Aging and Promotes Arthritogenic Effector Functions in Patients with Rheumatoid Arthritis

    loading  Checking for direct PDF access through Ovid

Abstract

SUMMARY

Immune aging manifests with a combination of failing adaptive immunity and insufficiently restrained inflammation. In patients with rheumatoid arthritis (RA), T cell aging occurs prematurely, but the mechanisms involved and their contribution to tissue-destructive inflammation remain unclear. We found that RA CD4+ T cells showed signs of aging during their primary immune responses and differentiated into tissue-invasive, proinflammatory effector cells. RA T cells had low expression of the double-strand-break repair nuclease MRE11A, leading to telomeric damage, juxtacentromeric heterochromatin unraveling, and senescence marker upregulation. Inhibition of MRE11A activity in healthy T cells induced the aging phenotype, whereas MRE11A overexpression in RA T cells reversed it. In human-synovium chimeric mice, MRE11Alow T cells were tissue-invasive and pro-arthritogenic, and MRE11A reconstitution mitigated synovitis. Our findings link premature T cell aging and tissue-invasiveness to telomere deprotection and heterochromatin unpacking, identifying MRE11A as a therapeutic target to combat immune aging and suppress dysregulated tissue inflammation.

Related Topics

    loading  Loading Related Articles