Intracellular recycling and cross-presentation by MHC class I molecules

    loading  Checking for direct PDF access through Ovid


Cross-presentation of internalized antigens by dendritic cells requires efficient delivery of Major Histocompatibility Complex (MHC) class I molecules to peptide-loading compartments. Strong evidence suggests that such loading can occur outside of the endoplasmic reticulum; however, the trafficking pathways and sources of class I molecules involved are poorly understood. Examination of non-professional, non-phagocytic cells has revealed a clathrin-independent, Arf6-dependent recycling pathway likely traveled by internalized optimally loaded (closed) class I molecules. Some closed and all open MHC class I molecules travel to late endosomes to be degraded but might also partly be re-loaded with peptides and recycled. Studies of viral interference revealed pathways in which class I molecules are directed to degradation in lysosomes upon ubiquitination at the surface, or upon AP-1 and HIV-nef-dependent misrouting from the Golgi network to lysosomes. While many observations made in non-professional cells remain to be re-examined in dendritic cells, available evidence suggests that both recycling and neo-synthesized class I molecules can be loaded with cross-presented peptides. Recycling molecules can be recruited to phagosomes triggered by innate signals such as TLR4 ligands, and may therefore specialize in loading with phagocytosed antigens. In contrast, AP-1-dependent accumulation at, or trafficking through, a Golgi compartment of newly synthesized molecules appears to be important for cross-presentation of soluble proteins and possibly of long peptides that are processed in the so-called vacuolar pathway. However, significant cell biological work will be required to confirm this or any other model and to integrate knowledge on MHC class I biochemistry and trafficking in models of CD8+ T-cell priming by dendritic cells.

Related Topics

    loading  Loading Related Articles