Isolation of disseminated neuroblastoma cells from bone marrow aspirates for pretreatment risk assessment by array comparative genomic hybridization

    loading  Checking for direct PDF access through Ovid

Abstract

In neuroblastoma, tumor biopsies are used for prognostic evaluation and risk assessment by molecular genetic analyses such as fluorescencein situhybridization (FISH) and array comparative genomic hybridization (array CGH). Analysis of primary tumors by array CGH can be hampered by the lack of sufficient tumor cells due to small biopsy size or availability of invaded bone marrow only. Given the importance of accurate assessment of genetic alterations in the diagnostic work-up of patients with neuroblastoma, we evaluated the possibility to analyze bone marrow metastases in patients with disseminated disease. Disseminated neuroblastoma cells were isolated from bone marrow aspirates by using either laser capture microdissection (LCM) or magnetic activated cell sorting (MACS). The array CGH profiles of these isolated metastases were compared to array CGH profiles and/or FISH data of the corresponding primary tumor. Here, we show that the major recurrent DNA copy number alterations detected in primary neuroblastoma tumors (i.e., 1p, 3p and 11q deletion, 17q gain andMYCNamplification) can be detected, with high sensitivity and specificity, in the disseminated neuroblastoma cells isolated from the bone marrow aspirates, using an array platform with high coverage for these regions. Moreover, we demonstrate that for archived material, for example, for retrospective studies, LCM is the method of choice, while for fresh bone marrow aspirates, acquired at the time of diagnosis, MACS is superior.

Related Topics

    loading  Loading Related Articles