Swelling and erosion properties of hydroxypropylmethylcellulose (Hypromellose) matrices—influence of agitation rate and dissolution medium composition

    loading  Checking for direct PDF access through Ovid

Abstract

The effect of dissolution medium variables, such as medium composition, ionic strength and agitation rate, on the swelling and erosion of Hypromellose (hydroxypropylmethylcellulose, HPMC) matrices of different molecular weights was examined. Swelling and erosion of HPMC polymers was determined by measuring the wet and subsequent dry weights of matrices. It was possible to describe the rate of dissolution medium uptake in terms of a square root relationship and the erosion of the polymer in terms of the cube root law. The extent of swelling increased with increasing molecular weight, and decreased with increasing agitation rate. The erosion rate was seen to increase with decrease in polymer molecular weight, with a decrease in ionic strength and with increasing agitation rate. The sensitivity of polymer erosion to the degree of agitation may influence the ability of these polymers to give reproducible, agitation-independent release, compared to more rigid non-eroding matrix materials, in the complex hydrodynamic environment of the gastrointestinal tract.

Related Topics

    loading  Loading Related Articles