Development of pulsatile multiparticulate drug delivery system coated with aqueous dispersion Aquacoat® ECD

    loading  Checking for direct PDF access through Ovid

Abstract

The objective of this study was to develop and evaluate a pulsatile multiparticulate drug delivery system (DDS), coated with aqueous dispersion Aquacoat® ECD. A rupturable pulsatile drug delivery system consists of (i) a drug core; (ii) a swelling layer, comprising a superdisintegrant and a binder; and (iii) an insoluble, water-permeable polymeric coating. Upon water ingress, the swellable layer expands, resulting in the rupturing of outer membrane with subsequent rapid drug release.

Regarding the cores, the lag time was shorter, when 10% (w/w) theophylline was layered on sugar cores compared with cores consisting of 100% theophylline. Regarding swelling layer, the release after lag time was fast and complete, when cross-linked carboxymethyl cellulose (AcDiSol®) was used as a swelling agent.

In contrast, a sustained release was achieved after the lag time, when low-substituted hydroxypropyl cellulose (L-HPC) and sodium starch glycolate (Explotab®) were used as swelling agents. The optimal level of AcDiSol® to achieve a fast and complete release after the lag time was 26% (w/w) (based on the weight of the coated pellets) for poorly soluble theophylline and 48% (w/w) for highly soluble propranolol HCl. The lag time can be controlled by the coating level of an outer membrane and increased with increasing coating level of the outer membrane. Outer membrane, formed using aqueous dispersion Aquacoat® ECD was brittle and ruptured sufficiently to ensure fast drug release, compared to ethylcellulose membrane formed using organic solution. The addition of talc led to increase brittleness of membrane and was very advantageous because of (i) reduced sensitivity of lag time on variations in the coating level and (ii) fast and complete drug release. Drug release starts only after rupturing of outer membrane, which was illustrated by microscopical observation of pellet during release.

Related Topics

    loading  Loading Related Articles