Preparation, characterization and drug release behavior of polyion complex micelles

    loading  Checking for direct PDF access through Ovid

Abstract

Double-hydrophilic block copolymer composed of poly(N-vinylpyrrolidone) (PVP) and poly(styrene-alter-maleic anhydride) (PSMA) has been synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Poly(N-vinylpyrrolidone)-block-poly(styrene-alter-maleic anhydride) (PVP-b-PSMA) thus formed was characterized by gel permeation chromatography (GPC), 1H nuclear magnetic resonance (1H NMR) spectroscopy and FTIR spectroscopy. In acid solution, this block copolymer spontaneously formed polyion complex (PIC) micelles with a cationic polyelectrolyte, chitosan. The PSMA/chitosan polyelectrolyte complex formed an inner core while PVP chains surrounded it as a shell. Transmission electron micrographs (TEMs) and dynamic light scattering (DLS) showed the PIC micelles to be spherically shaped, with mean hydrodynamic diameter around 146 nm. The model drug coenzyme A (CoA) was loaded into the micelles and the in vitro drug release behavior was investigated. We found that by manipulating the pH value and salt concentration of the release solution, it was possible to control the releasing rate of CoA.

Related Topics

    loading  Loading Related Articles