Characterisation and stability studies of a hydrophilic decapeptide in different adjuvant drug delivery systems: A comparative study of PLGA nanoparticles versus chitosan-dextran sulphate microparticles versus DOTAP-liposomes

    loading  Checking for direct PDF access through Ovid


Poly[lactic-co-glycolide] (PLGA) nanoparticles, chitosan-dextran sulphate microparticles, and DOTAP-liposomes were prepared as vaccine adjuvants and drug carriers for a small hydrophilic model peptide, and their different physico-chemical properties (size, PDI, zeta-potential, pH-value and peptide loading) were investigated. The model peptide's encapsulation efficiency (EE) in PLGA particles amounted to 15%, for DOTAP-liposomes to 20% and for chitosan particles up to 90%. The structural appearance of the particles was visualized by SEM and TEM. The stability of the aqueous formulations and the corresponding lyophilisates was monitored for 12 weeks (stored at T = 2–8 °C). The freeze-drying process and the addition of an appropriate cryoprotective agent (sucrose) proved to be essential for all carrier systems. As a result of this study, three different peptide-loaded drug delivery systems with different properties were successfully manufactured and showed sufficient product stability of their freeze-dried formulations over 12 weeks of storage.

Related Topics

    loading  Loading Related Articles