Distribution of a model bioactive within solid lipid nanoparticles and nanostructured lipid carriers influences its loading efficiency and oxidative stability

    loading  Checking for direct PDF access through Ovid


The overall goal of this study was to characterize the distribution of a model bioactive encapsulant in the lipid domain of SLNs and NLCs and its relationship with loading efficiency and reactivity of the model encapsulant with oxidative stress agents. Distribution of a model bioactive (beta-carotene) was compared to that of a fluorescent dye (Nile red) in SLNs, 10% NLC, 30% NLC, 50% NLC, 70% NLC (the number represents the percentage of liquid lipid within the total lipid amount) and emulsions. Fluorescence imaging shows that the distribution of Nile red in the lipid domain of colloidal carriers was similar to that of beta-carotene in all formulations. Based on the combination of imaging observations and loading efficiency measurements, the results demonstrate that beta-carotene was excluded from the lipid domain in both SLNs and NLCs. The extent of exclusion decreased, while uniformity in the distribution of encapsulant in the lipid domain of colloidal carrier increased with an increase in percentage of liquid lipid content of NLCs. Oxidative stability of the encapsulated beta-carotene in SLN and NLCs (at least until 30% liquid lipid composition) was significantly lower compared to that in emulsion. Only for the NLCs with 50 and 70% liquid lipid content, oxidative stability of the encapsulated compound was significantly higher than that in emulsions. Overall, the results demonstrate that differences in loading efficiency and oxidative stability of beta-carotene in SLNs and NLCs may be explained by the differences in the distribution of beta-carotene.

Related Topics

    loading  Loading Related Articles