Toxicity, toxicokinetics and biodistribution of dextran stabilized Iron oxide Nanoparticles for biomedical applications

    loading  Checking for direct PDF access through Ovid


Graphical abstract

Toxicity and risk assessment of dextran stabilized Iron oxide Nanoparticles for biomedical application: a regulatory approach.

Advancement in the field of nanoscience and technology has alarmingly raised the call for comprehending the potential health effects caused by deliberate or unintentional exposure to nanoparticles. Iron oxide magnetic nanoparticles have an increasing number of biomedical applications and hence a complete toxicological profile of the nanomaterial is therefore a mandatory requirement prior to its intended usage to ensure safety and to minimize potential health hazards upon its exposure. The present study elucidates the toxicity of in house synthesized Dextran stabilized iron oxide nanoparticles (DINP) in a regulatory perspective through various routes of exposure, its associated molecular, immune, genotoxic, carcinogenic effects and bio distribution profile. Synthesized ferrite nanomaterials were successfully coated with dextran (<25 nm) and were physicochemically characterized and subjected to in vitro and in vivo toxicity evaluations. The results suggest that surface coating of ferrite nanoparticles with dextran helps in improvising particle stability in biological environments. The nanoparticles do not seem to induce oxidative stress mediated toxicological effects, nor altered physiological process or behavior changes or visible pathological lesions. Furthermore no anticipated health hazards are likely to be associated with the use of DINP and could be concluded that the synthesized DINP is nontoxic/safe to be used for biomedical applications

Related Topics

    loading  Loading Related Articles