Improving the dissolution rate of hydrophobic drugs through encapsulation in porous lactose as a new biocompatible porous carrier

    loading  Checking for direct PDF access through Ovid


T he dissolution rates of indomethacin (IMC) and nifedipine (NIF) as poorly water-soluble model drugs have been significantly improved by encapsulating their molecules in the porous structure of engineered-particles of lactose as a new biocompatible porous carrier. The formulation method used in this study utilized a template-based spray-drying technique for in-situ production of porous lactose followed by two solvent-based drug-loading methods: (i) adsorption from organic solution, and (ii) incipient wetness impregnation to incorporate the drugs inside the porous lactose. In both cases, the results of DSC and XRD have revealed the deposition of nano-sized crystals of drugs inside the nanopores due to the nanoconfinement phenomenon. Greater extents of drug loadings have been achieved during the indomethacin adsorption due to the hydrogen-bonding interaction with the surface of lactose, as determined by FTIR spectroscopy. The in vitro release studies in simulated gastric fluid (SGF) have shown faster release rates for the impregnated particles compared with drug-loaded particles via the adsorption method.

Related Topics

    loading  Loading Related Articles