Patient acceptability of 3D printed medicines

    loading  Checking for direct PDF access through Ovid


Patient-centric medicine is a derivative term for personalised medicine, whereby the pharmaceutical product provides the best overall benefit by meeting the comprehensive needs of the individual; considering the end-user from the beginning of the formulation design process right through development to an end product is a must. One way in which to obtain personalised medicines, on-site and on-demand is by three-dimensional printing (3DP). The aim of this study was to investigate the influence of the shape, size and colour of different placebo 3D printed tablets (Printlets™) manufactured by fused deposition modelling (FDM) 3DP on end-user acceptability regarding picking and swallowing. Ten different printlet shapes were prepared by 3DP for an open-label, randomised, exploratory pilot study with 50 participants. Participant-reported outcome (PRO) and researcher reported outcome (RRO) were collected after picking and swallowing of selected printlet geometries including sphere, torus, disc, capsule and tilted diamond shapes. The torus printlet received the highest PRO cores for ease of swallowing and ease of picking. Printlets with a similar appearance to conventional formulations (capsule and disc shape) were also found to be easy to swallow and pick which demonstrates that familiarity is a critical acceptability attribute for end-users. RRO scores were in agreement with the PRO scores. The sphere was not perceived to be an appropriate way of administering an oral solid medicine. Smaller printlet sizes were found to be preferable; however it was found that the perception of size was driven by the type of shape. Printlet colour was also found to affect the perception of the end-user. Our study is the first to guide the pharmaceutical industry towards developing patient-centric medicine in different geometries via 3DP. Overall, the highest acceptability scores for torus printlets indicates that FDM 3DP is a promising fabrication technology towards increasing patient acceptability of solid oral medicines.

    loading  Loading Related Articles