Variable-focus microscopy and UV surface dissolution imaging as complementary techniques in intrinsic dissolution rate determination

    loading  Checking for direct PDF access through Ovid


HIGHLIGHTSNo form changes in ibuprofen after SDI run.Decrease in intrinsic dissolution rate of ibuprofen from 10 min to 20 min.Post-flush effective in removing trapped air bubbles.Surface parameters generated by variable-focus microscope showed key trend with intrinsic dissolution values seen from UV-imaging.This work reports a novel approach to the assessment of the surface properties of compacts used in Surface Dissolution Imaging (SDI). SDI is useful for determining intrinsic dissolution rate (IDR), an important parameter in early stage drug development. Surface topography, post-compaction and post-SDI run, have been measured using a non-contact, optical, three-dimensional microscope based on focus variation, the Alicona Infinite Focus Microscope, with the aim of correlating the IDRs to the surface properties. Ibuprofen (IBU) was used as a model poorly-soluble drug. DSC and XRD were used to monitor possible polymorphic changes that may have occurred post-compaction and post-SDI run. IBUs IDR decreased from 0.033 mg/min/cm2 to 0.022 mg/min/cm2 from 10 to 20 min, respectively, during the experiment. XRD and DSC showed no form changes during the SDI run. The surface topography images showed that a distinct imprint was embossed on the surfaces of some compacts which could affect IDRs. Surface parameter values were associated with the SDI experiments which showed strong correlations with the IDR values. The variable-focus microscope can be used as a complimentary tool in the determination of IDR values from the SDI.

    loading  Loading Related Articles