Current advanced therapy cell-based medicinal products for type-1-diabetes treatment

    loading  Checking for direct PDF access through Ovid

Abstract

In the XXI century diabetes mellitus has become one of the main threats to human health with higher incidence in regions such as Europe and North America. Type 1 diabetes mellitus (T1DM) occurs as a consequence of the immune-mediated destruction of insulin producing β-cells located in the endocrine part of the pancreas, the islets of Langerhans. The administration of exogenous insulin through daily injections is the most prominent treatment for T1DM but its administration is frequently associated to failure in glucose metabolism control, finally leading to hyperglycemia episodes. Other approaches have been developed in the past decades, such as whole pancreas and islet allotransplantation, but they are restricted to patients who exhibit frequent episodes of hypoglycemia or renal failure because the lack of donors and islet survival. Moreover, patients transplanted with either whole pancreas or islets require of immune suppression to avoid the rejection of the transplant. Currently, advanced therapy medicinal products (ATMP), such as implantable devices, have been developed in order to reduce immune rejection response while increasing cell survival. To overcome these issues, ATMPs must promote vascularization, guaranteeing the nutritional contribution, while providing O2 until vasculature can surround the device. Moreover, it should help in the immune-protection to avoid acute and chronic rejection. The transplanted cells or islets should be embedded within biomaterials with tunable properties like injectability, stiffness and porosity mimicking natural ECM structural characteristics. And finally, an infinitive cell source that solves the donor scarcity should be found such as insulin producing cells derived from mesenchymal stem cells (MSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Several companies have registered their ATMPs and future studies envision new prototypes. In this review, we will discuss the mechanisms and etiology of diabetes, comparing the clinical trials in the last decades in order to define the main characteristics for future ATMPs.

Related Topics

    loading  Loading Related Articles