Effects of cationic liposomes with stearylamine against virus infection

    loading  Checking for direct PDF access through Ovid


In this study, we demonstrated that cationic liposomes with incorporated stearylamine (SA) inhibit viral infectivity without preloaded active pharmaceutical ingredients. Specifically, we correlated physiochemical properties of liposomes, such as zeta potentials and particle sizes, with virus infectivity using the BacMam™ reagent, which is based on recombinant baculovirus (BV). Compared with neutral or negatively-charged liposomes, SA liposomes suppressed BV infectivity in several mammalian cell lines, including A549 cells. SA liposomes inhibited BV infection over 80% by optimizing the liposomal concentration and exposure time with cells. Moreover, these antiviral SA liposomes were not cytotoxic, and reducing the embedded cholesterol contents intensified the antiviral effects and simultaneously increased the binding of SA liposomes to the cell membranes. These data indicate that binding of SA liposomes to cell membranes may block virus entry. Finally, we also demonstrated the antiviral effects of SA liposomes on herpes simplex virus type 1 in A549 cells, and showed comparable efficacy to that of the antiviral drug acyclovir.

Related Topics

    loading  Loading Related Articles