Design and development of microemulsion systems of a new antineoplaston A10 analog for enhanced intravenous antitumor activity:In vitrocharacterization, molecular docking, 125I-radiolabeling andin vivobiodistribution studies

    loading  Checking for direct PDF access through Ovid


A10, (3-phenylacetylamino-2,6-piperidinedione), is a natural peptide with broad antineoplastic activity. Recently, in vitro antitumor effect of a new A10 analog [3-(4-methoxybenzoylamino)-2,6-piperidinedione] (MPD) has been verified. However, poor aqueous solubility represents an obstacle towards intravenous formulation of MPD and impedes successful in vivo antitumor activity. To surmount such limitation, MPD microemulsion (MPDME) was developed. A 3122 full factorial design using Design-Expert® software was adopted to study the influence of different parameters and select the optimum formulation (MPDME1). Transmission electron microscopy (TEM) displayed spherical droplets of MPDME1. The cytotoxicity of MPDME1 in Michigan Cancer Foundation 7 (MCF-7) breast cancer cell line exceeded that of MPD solution (MPDS) and tamoxifen. Compatibility with injectable diluents, in vitro hemolytic studies and in vivo histopathological examination confirmed the safety of parenteral application of MPDME1. Molecular docking results showed almost same binding affinity of A10, MPD and 125I-MPD with histone deacetylase 8 (HDAC8) receptor. Accordingly, radioiodination of MPDME1 and MPDS was done via direct electrophilic substitution reaction. Biodistribution of 125I-MPDME1 and 125I-MPDS in normal and tumor (ascites and solid) bearing mice showed high accumulation of 125I-MPDME1 in tumor tissues. Overall, the results proved that MPDME represents promising parenteral delivery system capable of improving antineoplastic activity of MPD.

    loading  Loading Related Articles