Immunogenicity of diphtheria toxoid and poly(I:C) loaded cationic liposomes after hollow microneedle-mediated intradermal injection in mice

    loading  Checking for direct PDF access through Ovid

Abstract

In this study, we aimed to investigate the immunogenicity of cationic liposomes loaded with diphtheria toxoid (DT) and poly(I:C) after hollow microneedle-mediated intradermal vaccination in mice. The following liposomal formulations were studied: DT loaded liposomes, a mixture of free DT and poly(I:C)-loaded liposomes, a mixture of DT-loaded liposomes and free poly(I:C), and liposomal formulations with DT and poly(I:C) either individually or co-encapsulated in the liposomes. Reference groups were DT solution adjuvanted with or without poly(I:C) (DT/poly(I:C)). The liposomal formulations were characterized in terms of particle size, zeta potential, loading and release of DT and poly(I:C). After intradermal injection of BALB/c mice with the formulations through a hollow microneedle, the immunogenicity was assessed by DT-specific ELISAs. All formulations induced similar total IgG and IgG1 titers. However, all the liposomal groups containing both DT and poly(I:C) showed enhanced IgG2a titers compared to DT/poly(I:C) solution, indicating that the immune response was skewed towards a Th1 direction. This enhancement was similar for all liposomal groups that contain both DT and poly(I:C) in the formulations. Our results reveal that a mixture of DT encapsulated liposomes and poly(I:C) encapsulated liposomes have a similar effect on the antibody responses as DT and poly(I:C) co-encapsulated liposomes. These findings may have implications for future design of liposomal vaccine delivery systems.

Related Topics

    loading  Loading Related Articles